denspp.offline.preprocessing.frame_preprocessing
#
Module Contents#
Functions#
Reducing the frame size of input frames to specific values Args: frames_in: input_values sel_pos: List with two elements in order to say position start and end Returns: frames with reduced size |
|
Generating noisy spike frames |
|
Generating zero frames with noise for data augmentation |
|
Calculating mean waveforms of spike waveforms |
|
Calculating mean waveforms of spike waveforms with median() |
|
Calculating SNR of each cluster |
|
Generation of noisy spike frames with AWGN with noise power [dB] in specific interval |
API#
- denspp.offline.preprocessing.frame_preprocessing.change_frame_size(frames_in: numpy.ndarray, sel_pos: list) numpy.ndarray [source]#
Reducing the frame size of input frames to specific values Args: frames_in: input_values sel_pos: List with two elements in order to say position start and end Returns: frames with reduced size
- denspp.offline.preprocessing.frame_preprocessing.generate_frames(num: int, frame_in: numpy.ndarray, cluster_in: int, snr_out: list, fs: float = 20000.0) [numpy.ndarray, numpy.ndarray] [source]#
Generating noisy spike frames
- denspp.offline.preprocessing.frame_preprocessing.generate_zero_frames(frame_size: int, num_frames: int, noise_range: list) tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray] [source]#
Generating zero frames with noise for data augmentation
- denspp.offline.preprocessing.frame_preprocessing.calculate_frame_mean(frames_in: numpy.ndarray, frames_cl: numpy.ndarray, do_integer_output: bool = False) numpy.ndarray [source]#
Calculating mean waveforms of spike waveforms
- denspp.offline.preprocessing.frame_preprocessing.calculate_frame_median(frames_in: numpy.ndarray, frames_cl: numpy.ndarray, do_integer_output: bool = False) numpy.ndarray [source]#
Calculating mean waveforms of spike waveforms with median()
- denspp.offline.preprocessing.frame_preprocessing.calculate_frame_snr(frames_in: numpy.ndarray, frames_cl: numpy.ndarray, frames_mean: numpy.ndarray) numpy.ndarray [source]#
Calculating SNR of each cluster
- Parameters:
frames_in – Numpy array with spike frames
frames_cl – Numpy array with cluster label to each spike frame
frames_mean – Numpy array with mean waveforms of cluster