denspp.offline.analog.func
#
Module Contents#
Functions#
Performing a re-quantization of the transient input signal (amplitude and time) Args: transient_orig: Input dictionary with transient signal [‘V’: voltage, ‘I’: current, ‘fs’: sampling rate] fs_new: New sampling rate [Hz] u_lsb: New smallest voltage resolution (least significant bit, LSB) Returns: Dictionary with new transient output [‘V’: voltage, ‘I’: current, ‘fs’: sampling rate] |
|
Do resampling of time value from transient signals Args: signal_in: Numpy array of transient input signal fs_orig: Original sampling rate value fs_new: New sampling rate value do_offset_comp: Do offset compensation on output Returns: Numpy array of resampled into |
|
Do resampling of amplitude from transient signal Args: signal_in: Numpy array with transient signal u_lsb: New smallest voltage resolution (least significant bit, LSB) Returns: Numpy array with re-sampled input (amplitude) |
|
Calculating the injected charge amount of one stimulation pattern |
API#
- denspp.offline.analog.func.do_quantize_transient(transient_orig: dict, fs_new: float, u_lsb: float, i_gain: float = 2000.0) dict [source]#
Performing a re-quantization of the transient input signal (amplitude and time) Args: transient_orig: Input dictionary with transient signal [‘V’: voltage, ‘I’: current, ‘fs’: sampling rate] fs_new: New sampling rate [Hz] u_lsb: New smallest voltage resolution (least significant bit, LSB) Returns: Dictionary with new transient output [‘V’: voltage, ‘I’: current, ‘fs’: sampling rate]
- denspp.offline.analog.func.do_resample_time(signal_in: numpy.ndarray, fs_orig: float, fs_new: float, do_offset_comp: bool = False) numpy.ndarray [source]#
Do resampling of time value from transient signals Args: signal_in: Numpy array of transient input signal fs_orig: Original sampling rate value fs_new: New sampling rate value do_offset_comp: Do offset compensation on output Returns: Numpy array of resampled into
- denspp.offline.analog.func.do_resample_amplitude(signal_in: numpy.ndarray, u_lsb: float) numpy.ndarray [source]#
Do resampling of amplitude from transient signal Args: signal_in: Numpy array with transient signal u_lsb: New smallest voltage resolution (least significant bit, LSB) Returns: Numpy array with re-sampled input (amplitude)
- denspp.offline.analog.func.calculate_signal_integration(signal: numpy.ndarray, time: numpy.ndarray, initial: float = 0.0) numpy.ndarray [source]#
Calculating the injected charge amount of one stimulation pattern
- Parameters:
signal – Numpy array with current input signal
time – Numpy array with timesamples [s]
initial – Floating value with initial value
- Returns:
Numpy array with injected charge amount during signal time