denspp.offline.pipeline.pipeline_cmds
#
Module Contents#
Classes#
Class for searching all Pipeline Processors in repository to get an overview |
|
Class for searching all Pipeline Processors in repository to get an overview |
|
Class for handling the pipeline processing |
|
Class for handling the processor Attribute: use_multithreading: Boolean for enabling multithreading on data processing pipeline num_max_workers: Integer with total number of workers used in multithreading do_block_plots: Boolean for generating and blocking plots |
|
Data#
API#
- class denspp.offline.pipeline.pipeline_cmds.PipelineLibrary[source]#
Class for searching all Pipeline Processors in repository to get an overview
- get_registry(package: str = 'src_pipe') denspp.offline.dnn.model_library.ModuleRegistryManager [source]#
- class denspp.offline.pipeline.pipeline_cmds.DataloaderLibrary[source]#
Class for searching all Pipeline Processors in repository to get an overview
- get_registry(package: str = 'src_pipe') denspp.offline.dnn.model_library.ModuleRegistryManager [source]#
- class denspp.offline.pipeline.pipeline_cmds.PipelineCMD[source]#
Class for handling the pipeline processing
- path2save: str = <Multiline-String>#
- generate_run_folder(path2runs: str, addon: str) None [source]#
Generating the default folder for saving figures and data
- Parameters:
path2runs – Main folder in which the figures and data is stored
addon – Name of new folder for saving results
- Returns:
None
- apply_mapping(data: numpy.ndarray, electrode_id: list, mapping: numpy.ndarray) numpy.ndarray [source]#
Transforming the input data to 2D array using electrode mapping configuration
- Parameters:
data – Input data with shape (num_channels, num_samples)
electrode_id – List with name/numbers of electrodes used on data
mapping – Numpy array with electrode ID localisation
- Returns:
Numpy array with transformed data to 2D
- deploy_mapping(data: numpy.ndarray, electrode_id: list, mapping: numpy.ndarray) numpy.ndarray [source]#
Transforming the 2D data to normal electrode orientation using electrode mapping configuration
- Parameters:
data – Input data with shape (num_rows, num_cols, num_samples)
electrode_id – List with name/numbers of electrodes used on data
mapping – Numpy array with electrode ID localisation
- Returns:
Numpy array with original data format
- class denspp.offline.pipeline.pipeline_cmds.ThreadProcessor(rawdata: numpy.ndarray, fs_ana: float, pipeline)[source]#
Bases:
threading.Thread
- output_save: dict#
None
- class denspp.offline.pipeline.pipeline_cmds.SettingsThread[source]#
Class for handling the processor Attribute: use_multithreading: Boolean for enabling multithreading on data processing pipeline num_max_workers: Integer with total number of workers used in multithreading do_block_plots: Boolean for generating and blocking plots
- use_multithreading: bool#
None
- num_max_workers: int#
None
- do_block_plots: bool#
None
- denspp.offline.pipeline.pipeline_cmds.RecommendedSettingsThread#
‘SettingsThread(…)’
- class denspp.offline.pipeline.pipeline_cmds.ProcessingData(pipeline, settings: denspp.offline.pipeline.pipeline_cmds.SettingsThread, data_in: numpy.ndarray, channel_id: numpy.ndarray, fs: float)[source]#
Initialization
Thread processor for analyzing data Args: pipeline: Used pipeline for signal processing settings: Settings for handling the threads data_in: Numpy array of input data for signal processing channel_id: Corresponding ID of used electrode / channel fs: Sampling rate of data Returns: None