denspp.offline.dnn.training.classifier_train#
Module Contents#
Classes#
Class for handling the PyTorch training/inference pipeline Attributes: model_name: String with the model name patience: Integer value with number of epochs before early stopping optimizer: String with PyTorch optimizer name loss: String with method name for the loss function deterministic_do: Boolean if deterministic training should be done deterministic_seed: Integer with the seed for deterministic training num_kfold: Integer value with applying k-fold cross validation num_epochs: Integer value with number of epochs batch_size: Integer value with batch size data_split_ratio: Float value for splitting the input dataset between training and validation data_do_shuffle: Boolean if data should be shuffled before training custom_metrics: List with string of custom metrics to calculate during training |
|
Data#
API#
- class denspp.offline.dnn.training.classifier_train.SettingsClassifier[source]#
Bases:
denspp.offline.dnn.training.common_train.SettingsPytorchClass for handling the PyTorch training/inference pipeline Attributes: model_name: String with the model name patience: Integer value with number of epochs before early stopping optimizer: String with PyTorch optimizer name loss: String with method name for the loss function deterministic_do: Boolean if deterministic training should be done deterministic_seed: Integer with the seed for deterministic training num_kfold: Integer value with applying k-fold cross validation num_epochs: Integer value with number of epochs batch_size: Integer value with batch size data_split_ratio: Float value for splitting the input dataset between training and validation data_do_shuffle: Boolean if data should be shuffled before training custom_metrics: List with string of custom metrics to calculate during training
- denspp.offline.dnn.training.classifier_train.DefaultSettingsTrainingCE#
‘SettingsClassifier(…)’
- class denspp.offline.dnn.training.classifier_train.TrainClassifier(config_train: denspp.offline.dnn.training.classifier_train.SettingsClassifier, config_data: denspp.offline.dnn.data_config.SettingsDataset, do_train: bool = True)[source]#
Bases:
denspp.offline.dnn.training.common_train.PyTorchHandlerInitialization
Class for Handling Training of Classifiers
- Parameters:
config_data – Settings for handling and loading the dataset (just for saving)
config_train – Settings for handling the PyTorch Trainings Routine of a Classifier
do_train – Do training of model otherwise only inference
- Returns:
None
- load_dataset(dataset: denspp.offline.dnn.data_config.DatasetFromFile) None[source]#
Loading the loaded dataset and transform it into right dataloader
- Parameters:
dataset – Dataclass with dataset loaded from extern
- Returns:
None
- do_training(path2save=Path('.')) dict[source]#
Start model training incl. validation and custom-own metric calculation Args: path2save: Path for saving the results [Default: ‘’ –> generate new folder] Returns: Dictionary with metrics from training (loss_train, loss_valid, own_metrics)
- do_post_training_validation(do_ptq: bool = False) denspp.offline.dnn.training.common_train.DataValidation[source]#
Performing the post-training validation with the best model
- Parameters:
do_ptq – Boolean for activating post training quantization during post-training validation
- Returns:
Dataclass with results from validation phase