Source code for elasticai.creator.nn.float.math_operations

from typing import cast

import torch

from elasticai.creator.base_modules.conv1d import MathOperations as Conv1dOps
from elasticai.creator.base_modules.linear import MathOperations as LinearOps
from elasticai.creator.base_modules.lstm_cell import MathOperations as LSTMOps

from .round_to_float import RoundToFloat


[docs] class MathOperations(LinearOps, Conv1dOps, LSTMOps): def __init__(self, mantissa_bits: int, exponent_bits: int) -> None: self.mantissa_bits = mantissa_bits self.exponent_bits = exponent_bits @property def largest_positive_value(self) -> float: exponent_bias = 2 ** (self.exponent_bits - 1) return (2 - 1 / 2**self.mantissa_bits) * 2 ** ( 2**self.exponent_bits - exponent_bias - 1 ) @property def smallest_negative_value(self) -> float: return -self.largest_positive_value
[docs] def quantize(self, a: torch.Tensor) -> torch.Tensor: return self._round(self._clamp(a))
def _clamp(self, a: torch.Tensor) -> torch.Tensor: return torch.clamp( a, min=self.smallest_negative_value, max=self.largest_positive_value ) def _round(self, a: torch.Tensor) -> torch.Tensor: return cast( torch.Tensor, RoundToFloat.apply(a, self.mantissa_bits, self.exponent_bits), )
[docs] def add(self, a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: return self.quantize(a + b)
[docs] def matmul(self, a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: return self.quantize(torch.matmul(a, b))
[docs] def mul(self, a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: return self.quantize(a * b)