lab_driver.process_data
#
Module Contents#
Classes#
Functions#
Generating window for smoothing transformation method. |
|
Performing the Discrete Fast Fourier Transformation. |
API#
- lab_driver.process_data.window_method(window_size: int, method: str = 'hamming') numpy.ndarray [source]#
Generating window for smoothing transformation method.
- Parameters:
window_size – Integer number with size of the window
method – Selection of window method [‘’: None, ‘Hamming’, ‘guassian’, ‘bartlett’, ‘blackman’]
- Returns:
Numpy array with window
- lab_driver.process_data.do_fft(y: numpy.ndarray, fs: float, method_window: str = '') [numpy.ndarray, numpy.ndarray] [source]#
Performing the Discrete Fast Fourier Transformation.
- Parameters:
y – Transient input signal
fs – Sampling rate [Hz]
method_window – Selected window [‘’: None, ‘Hamming’, ‘guassian’, ‘bartlett’, ‘blackman’]
- Returns:
Tuple with (1) freq - Frequency and (2) Y - Discrete output
- class lab_driver.process_data.MetricCalculator[source]#
Bases:
lab_driver.process_common.ProcessCommon
Initialization
Class with constructors for processing the measurement results for extracting device-specific metrics
- calculate_lsb_mean(stim_input: numpy.ndarray, daq_output: numpy.ndarray) float [source]#
Function for calculating the mean Least Significant Bit (LSB)
- Parameters:
stim_input – Numpy array with stimulus input
daq_output – Numpy array with DAQ output
- Returns:
Float with LSB
- static calculate_lsb(stim_input: numpy.ndarray, daq_output: numpy.ndarray) numpy.array [source]#
Function for calculating the mean Least Significant Bit (LSB)
- Parameters:
stim_input – Numpy array with stimulus input
daq_output – Numpy array with DAQ output
- Returns:
Float with LSB
- calculate_dnl(stim_input: numpy.ndarray, daq_output: numpy.ndarray) numpy.ndarray [source]#
Calculating the Differential Non-Linearity (DNL) of a transfer function from DAC/ADC
- Parameters:
stim_input – Numpy array with stimulus input
daq_output – Numpy array with DAQ output
- Returns:
Numpy array with DNL
- abstractmethod static calculate_inl(stim_input: numpy.ndarray, daq_output: numpy.ndarray) numpy.ndarray [source]#
Calculating the Integral Non-Linearity (INL) of a transfer function from DAC/ADC
- Parameters:
stim_input – Numpy array with stimulus input
daq_output – Numpy array with DAQ output
- Returns:
Numpy array with INL
- static calculate_error_mbe(y_pred: numpy.ndarray | float, y_true: numpy.ndarray | float) float [source]#
Calculating the distance-based metric with mean bias error
- Parm y_pred:
Numpy array or float value from prediction
- Parameters:
y_true – Numpy array or float value from true label
- Returns:
Float value with error
- static calculate_error_mae(y_pred: numpy.ndarray | float, y_true: numpy.ndarray | float) float [source]#
Calculating the distance-based metric with mean absolute error
- Parameters:
y_pred – Numpy array or float value from prediction
y_true – Numpy array or float value from true label
- Returns:
Float value with error
- static calculate_error_mse(y_pred: numpy.ndarray | float, y_true: numpy.ndarray | float) float [source]#
Calculating the distance-based metric with mean squared error
- Parameters:
y_pred – Numpy array or float value from prediction
y_true – Numpy array or float value from true label
- Returns:
Float value with error
- static calculate_error_mape(y_pred: numpy.ndarray | float, y_true: numpy.ndarray | float) float [source]#
Calculating the distance-based metric with mean absolute percentage error
- Parameters:
y_pred – Numpy array or float value from prediction
y_true – Numpy array or float value from true label
- Returns:
Float value with error
- static calculate_total_harmonics_distortion(signal: numpy.ndarray, fs: float, N_harmonics: int) float [source]#
Calculating the Total Harmonics Distortion (THD) of transient input
- Parameters:
signal – Numpy array with transient signal to extract spectral analysis
fs – Applied sampling rate [Hz]
N_harmonics – Number of used harmonics for calculating THD
- Returns:
THD value (in dB)
- static calculate_cosine_similarity(y_pred: numpy.ndarray, y_true: numpy.ndarray) float [source]#
Calculating the Cosine Similarity of two different inputs (same size)
- Parameters:
y_pred – Numpy array or float value from prediction
y_true – Numpy array or float value from true label
- Returns:
Float value with error