Source code for lab_driver.process_plots

import numpy as np
from os import makedirs
from os.path import join
from matplotlib import pyplot as plt


[docs] def get_plot_color(idx: int) -> str: """Getting the color string""" sel_color = ['k', 'r', 'b', 'g', 'y', 'c', 'm', 'gray'] return sel_color[idx % len(sel_color)]
[docs] def get_plot_marker(idx: int) -> str: """Getting the marker for plotting""" sel_marker = '.+x_' return sel_marker[idx % len(sel_marker)]
[docs] def save_figure(fig, path: str, name: str, formats: list=('pdf', 'svg')) -> None: """Saving figure in given format Args: fig: Matplot which will be saved path: Path for saving the figure name: Name of the plot formats: List with data formats for saving the figures Returns: None """ makedirs(path, exist_ok=True) path2fig = join(path, name) for idx, form in enumerate(formats): fig.savefig(f"{path2fig}.{form}", format=form)
[docs] def scale_auto_value(data: np.ndarray | float) -> [float, str]: """Getting the scaling value and corresponding string notation for unit scaling in plots Args: data: Array or value for calculating the SI scaling value Returns: Tuple with [0] = scaling value and [1] = SI pre-unit """ ref_dict = {'T': -4, 'G': -3, 'M': -2, 'k': -1, '': 0, 'm': 1, 'µ': 2, 'n': 3, 'p': 4, 'f': 5} value = np.max(np.abs(data)) if isinstance(data, np.ndarray) else data str_value = str(value).split('.') digit = 0 if 'e' not in str_value[1]: if not str_value[0] == '0': # --- Bigger Representation sys = -np.floor(len(str_value[0]) / 3) else: # --- Smaller Representation for digit, val in enumerate(str_value[1], start=1): if '0' not in val: break sys = np.ceil(digit / 3) else: val = int(str_value[1].split('e')[-1]) sys = -np.floor(abs(val) / 3) if np.sign(val) == 1 else np.ceil(abs(val) / 3) scale = 10 ** (sys * 3) units = [key for key, div in ref_dict.items() if sys == div][0] return scale, units
[docs] def plot_transfer_function_norm(data: dict, path2save: str='', xlabel: str='Stimulus Input', ylabel: str='Stimulus Output', title: str='Transfer Function', file_name: str='') -> None: """Function for plotting the transfer function :param data: Dictionary with extracted values from measurement data :param path2save: Path for saving the figure :param xlabel: Text Label for x-axis :param ylabel: Text Label for y-axis :param title: Text Label for title :param file_name: File name of the saved figure :return: None """ val_input = data['stim'] xaxis = np.linspace(start=val_input[0], stop=val_input[-1], num=9, endpoint=True) val_output = np.array([data[key]['mean'] for key in data.keys() if not key == 'stim']) yaxis = np.linspace(start=val_output.min(), stop=val_output.max(), num=9, endpoint=True) dy = np.diff(yaxis).max() plt.figure() for idx, key in enumerate(data.keys()): if not key == 'stim': plt.step(val_input, data[key]['mean'], where='mid', marker='.', c=get_plot_color(idx), label=key) plt.fill_between(val_input, data[key]['mean'] - data[key]['std'], data[key]['mean'] + data[key]['std'], step='mid', alpha=0.3, color='gray') plt.xticks(xaxis) plt.xlim([val_input[0], val_input[-1]]) plt.yticks(yaxis) plt.ylim([val_output.min()-dy, val_output.max()+dy]) plt.title(title) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.legend(loc='upper left') plt.grid() plt.tight_layout() if path2save and file_name: save_figure(plt, path2save, f'{file_name.lower()}') plt.show()
[docs] def plot_transfer_function_metric(data: dict, func: object, path2save: str='', xlabel: str='Stimulus Input', ylabel: str='Stimulus Output', title: str='Transfer Function', file_name: str='') -> None: """Function for plotting the metric, extracted from the transfer function :param data: Dictionary with pre-processed data from measurement with keys: ['stim', 'ch<x>': {'mean', 'std'}} :param func: Function for calculating the metric :param path2save: Path for saving the figure :param xlabel: Text Label for x-axis :param ylabel: Text Label for y-axis :param title: Text Label for title :param file_name: File name of the saved figure :return: None """ data_lsb = {'stim': data['stim']} for key in data.keys(): if not key == 'stim': scale_val = 1.0 metric = func(data['stim'], data[key]['mean']) if not metric.size == data['stim'].size: metric = np.concatenate((np.array((metric[0], )), metric), axis=0) data_lsb.update({key: {'mean': metric, 'std': scale_val * data[key]['std']}}) plot_transfer_function_norm( data=data_lsb, path2save=path2save, xlabel=xlabel, ylabel=ylabel, title=title, file_name=file_name )