Source code for denspp.offline.template.call_dataset
import numpy as np
from logging import getLogger, Logger
from denspp.offline.data_format import YamlHandler
from denspp.offline.data_call import build_waveform_dataset, SettingsWaveformDataset, DefaultSettingsWaveformDataset
from denspp.offline.dnn import DatasetFromFile
from denspp.offline.dnn.data_config import SettingsDataset, ControllerDataset
from denspp.offline.dnn.data_processor import DataProcessor
[docs]
class DatasetLoader(ControllerDataset):
_logger: Logger
_settings: SettingsDataset
_processor: DataProcessor
_path: str
def __init__(self, settings: SettingsDataset, temp_folder: str='') -> None:
"""Class for downloading (function name with '__get_xyz')
and preparing (function name with '__prepare_xyz') custom-defined datasets to train deep learning models
:param settings: Object of class SettingsDataset for handling dataset used in DeepLearning"""
super().__init__(settings, temp_folder)
self._logger = getLogger(__name__)
self._processor = DataProcessor(settings)
def __get_mnist(self) -> None:
pass
def __prepare_mnist(self) -> DatasetFromFile:
from sklearn.datasets import fetch_openml
data, label = fetch_openml("mnist_784", return_X_y=True, as_frame=False, parser="liac-arff")
dataset = DatasetFromFile(
data=data.reshape(-1, 28, 28),
label=np.array(label, dtype=np.uint8),
dict=['zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine'],
mean=np.zeros(shape=(10, 28, 28)),
)
return self._processor.process_vision_datasets(
data=dataset
)
def __get_waveforms(self) -> SettingsWaveformDataset:
return YamlHandler(
template=DefaultSettingsWaveformDataset,
path='config',
file_name='Config_WaveformDataset'
).get_class(SettingsWaveformDataset)
def __prepare_waveforms(self) -> DatasetFromFile:
data = build_waveform_dataset(
settings_data=self.__get_waveforms()
)
dataset = DatasetFromFile(
data=data.data,
label=data.label,
dict=data.dict,
mean=np.zeros(shape=(len(data.dict), *data.data.shape[1:]))
)
return self._processor.process_timeseries_datasets(data=dataset)