Source code for denspp.offline.template.call_data_dummy

import numpy as np
from scipy.io import loadmat
from denspp.offline.data_call import ControllerData, SettingsData


[docs] class DataLoaderTest(ControllerData): _settings: SettingsData _methods_available: list def __init__(self, settings: SettingsData) -> None: """Class for loading and manipulating the used dataset :param settings: Settings class instance """ ControllerData.__init__(self) self._settings = settings self._methods_available = self._extract_func(self.__class__) def __load_test_1d(self) -> None: fs_used = 20e3 self._load_rawdata_into_pipeline( elec_type="Test_1d", dataset_name='', file_name='', fs_orig=fs_used, elec_orn=[1], rawdata=np.random.randn(int(fs_used)), scale_data=1e-6, ) def __load_test_2d(self) -> None: fs_used = 20e3 self._load_rawdata_into_pipeline( elec_type="Test_2d", dataset_name='', file_name='', fs_orig=fs_used, elec_orn=[1, 2, 3, 4], rawdata=np.random.randn(4, int(fs_used)), scale_data=1e-6, ) def __load_test_2d_zero(self) -> None: fs_used = 20e3 self._load_rawdata_into_pipeline( elec_type="Test_2d", dataset_name='', file_name='', fs_orig=fs_used, elec_orn=[1, 2, 3], rawdata=np.random.randn(3, int(fs_used)), scale_data=1e-6, ) def __load_test_args(self, fs: float, data: np.ndarray) -> None: self._load_rawdata_into_pipeline( elec_type="Test_args", dataset_name='', file_name='', fs_orig=fs, elec_orn=[1], rawdata=data, scale_data=1., ) def __load_martinez_with_labels(self) -> None: path2file = self._prepare_access_file(folder_name="_SimDaten_Martinez2009", data_type='simulation_*.mat') loaded_data = loadmat(path2file) fs_used = float(1 / loaded_data["samplingInterval"][0][0] * 1000) spike_xoffset = int(-0.1e-3 * fs_used) self._load_rawdata_into_pipeline( elec_type="Synthetic", dataset_name='martinez', file_name=path2file, fs_orig=fs_used, elec_orn=[int(loaded_data["chan"][0]) - 1], rawdata=loaded_data["data"][0], scale_data=0.5e-6, evnt_pos=[loaded_data["spike_times"][0][0][0] - spike_xoffset], evnt_id=[loaded_data["spike_class"][0][0][0]] ) def __load_martinez_without_labels(self) -> None: path2file = self._prepare_access_file(folder_name="_SimDaten_Martinez2009", data_type='simulation_*.mat') loaded_data = loadmat(path2file) fs_used = float(1 / loaded_data["samplingInterval"][0][0] * 1000) self._load_rawdata_into_pipeline( elec_type="Synthetic", dataset_name='martinez', file_name=path2file, fs_orig=fs_used, elec_orn=[int(loaded_data["chan"][0]) - 1], rawdata=loaded_data["data"][0], scale_data=0.5e-6 )